Joint Optimization of Multi-User Partial Offloading Strategy and Resource Allocation Strategy in D2D-Enabled MEC

Author:

Yong Dongping12ORCID,Liu Ran13ORCID,Jia Xiaolin12,Gu Yajun12

Affiliation:

1. Mobile Internet of Things and Radio Frequency Identification Technology Key Laboratory of Mianyang (MIOT&RFID), Mianyang 621010, China

2. RFID & IOT Laboratory, School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China

3. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China

Abstract

With the emergence of more and more computing-intensive and latency-sensitive applications, insufficient computing power and energy of user devices has become a common phenomenon. Mobile edge computing (MEC) is an effective solution to this phenomenon. MEC improves task execution efficiency by offloading some tasks to edge servers for execution. In this paper, we consider a device-to-device technology (D2D)-enabled MEC network communication model, and study the subtask offloading strategy and the transmitting power allocation strategy of users. The objective function is to minimize the weighted sum of the average completion delay and average energy consumption of users, which is a mixed integer nonlinear problem. We first propose an enhanced particle swarm optimization algorithm (EPSO) to optimize the transmit power allocation strategy. Then, we utilize the Genetic Algorithm (GA) to optimize the subtask offloading strategy. Finally, we propose an alternate optimization algorithm (EPSO-GA) to jointly optimize the transmit power allocation strategy and the subtask offloading strategy. The simulation results show that the EPSO-GA outperforms other comparative algorithms in terms of the average completion delay, average energy consumption, and average cost. In addition, no matter how the weight coefficients of delay and energy consumption change, the average cost of the EPSO-GA is the least.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Key R&D Projects of Sichuan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3