Machine Learning-Based GPR with LBFGS Kernel Parameters Selection for Optimal Throughput Mining in 5G Wireless Networks

Author:

Isabona JosephORCID,Imoize Agbotiname LuckyORCID,Ojo StephenORCID,Do Dinh-Thuan,Lee Cheng-ChiORCID

Abstract

Considering the ever-growing demand for an efficient method of deductive mining and extrapolative analysis of large-scale dimensional datasets, it is very critical to explore advanced machine learning models and algorithms that can reliably meet the demands of modern cellular networks, satisfying computational efficiency and high precision requirements. One non-parametric supervised machine learning model that finds useful applications in cellular networks is the Gaussian process regression (GPR). The GPR model holds a key controlling kernel function whose hyperparameters can be tuned to enhance its supervised predictive learning and adaptive modeling capabilities. In this paper, the limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) with kernel parameters selection (KPS) algorithm is employed to tune the GPR model kernel hyperparameters rather than using the standard Bayesian optimization (BOP), which is computationally expensive and does not guarantee substantive precision accuracy in the extrapolative analysis of a large-scale dimensional dataset. In particular, the hybrid GPR–LBFGS is exploited for adaptive optimal extrapolative learning and estimation of throughput data obtained from an operational 5G new radio network. The extrapolative learning accuracy of the proposed GPR–LBFGS with the KPS algorithm was analyzed and compared using standard performance metrics such as the mean absolute error, mean percentage error, root mean square error and correlation coefficient. Generally, results revealed that the GPR model combined with the LBFGS kernel hyperparameter selection is superior to the Bayesian hyperparameter selection method. Specifically, at a 25 m distance, the proposed GPR–LBFGS with the KPS method attained 0.16 MAE accuracy in throughput data prediction. In contrast, the other methods attained 46.06 and 53.68 MAE accuracies. Similarly, at 50 m, 75 m, 100 m, and 160 m measurement distances, the proposed method attained 0.24, 0.18, 0.25, and 0.11 MAE accuracies, respectively, in throughput data prediction, while the two standard methods attained 47.46, 49.93, 29.80, 53.92 and 47.61, 52.54, 53.43, 54.97, respectively. Overall, the GPR–LBFGS with the KPS method would find valuable applications in 5G and beyond 5 G wireless communication systems.

Funder

Nigerian Petroleum Technology Development Fund

German Academic Exchange Service

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3