RoboDoc: Smart Robot Design Dealing with Contagious Patients for Essential Vitals Amid COVID-19 Pandemic

Author:

Khan Hashim Raza,Haura Insia,Uddin RiazORCID

Abstract

The COVID-19 pandemic took valuable lives all around the world. The virus was so contagious and lethal that some of the doctors who worked with COVID-19 patients either were seriously infected or died, even after using personal protective equipment. Therefore, the challenge was not only to help communities recover from the pandemic, but also to protect the healthcare staff/professionals. In this regard, this paper presents a comprehensive design of a customized pseudo-humanoid robot to specifically deal with contagious patients by taking basic vitals through a healthcare staff member from a remote location amid the COVID-19 pandemic. The proposed design consists of two portions: (1) a complete design of mechanical, electrical/electronic, mechatronic, control, and communication parts along with complete assembly to make a complete multitask-performing robot that interacts with patients to take vitals, termed as RoboDoc, and (2) the design of the healthcare staff side (master/operator side) control of a joystick mechanism with haptic feedback. The proposed RoboDoc design can be majorly divided into three parts: (1) the locomotion part is composed of two-wheeled DC motors on a rover base and two omni wheels to support the movements of the robot; (2) the interaction part consists of a single degree-of-freedom (s-DOF) neck to have communication with different heights of patients and (3) two anthropomorphic arms with three degrees-of-freedom (3-DOF). These parts help RoboDoc to reach to patient’s location and take all of the vitals using relevant devices such as an IR temperature thermometer, pulse oximeter, and electronic stethoscope for taking live auscultations from the lungs and heart of the patient. The mechanical design was created using solid works, and the electronic control design was made via proteus 8.9. For haptic teleoperation, an XBOX 360 controller based on wireless communication is used at the master/operator side. For the convenience of the healthcare staff (operator), an interactive desktop-based GUI was developed for live monitoring of all the vital signs of patients. For the remote conversation between the healthcare staff and the patient, a tablet is mounted (that also serves as the robot’s face), and that tablet is controlled via a mobile application. For visual aid, a DSLR camera is integrated and controlled remotely, which helps the doctor monitor the patient’s location as well as examine the patient’s throat. Finally, successful experimental results of basic vitals of the remote patient such as temperature sensing, pulse oximeter, and heart rate (using haptic feedback) were obtained to show the significance of the proposed cost-effective RoboDoc design.

Funder

NCRA Research Fund

Establishment of National Centre of Robotic and Automation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference50 articles.

1. A review of surgical robots for spinal interventions;Bertelsen;Int. J. Med. Robot. Comput. Assist. Surg.,2012

2. Robotics and artificial intelligence in healthcare during COVID-19 pandemic: A systematic review;Sarker;Robot. Auton. Syst.,2021

3. der Loos, V., Machiel, H.F., Reinkensmeyer, D.J., and Guglielmelli, E. (2016). Springer Handbook of Robotics, Springer.

4. Hybrid Bionic Systems for the Replacement of Hand Function;Micera;Proc. IEEE,2006

5. Socially assistive robotics;Scassellati;IEEE Robot. Autom. Mag.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3