Abstract
The COVID-19 pandemic took valuable lives all around the world. The virus was so contagious and lethal that some of the doctors who worked with COVID-19 patients either were seriously infected or died, even after using personal protective equipment. Therefore, the challenge was not only to help communities recover from the pandemic, but also to protect the healthcare staff/professionals. In this regard, this paper presents a comprehensive design of a customized pseudo-humanoid robot to specifically deal with contagious patients by taking basic vitals through a healthcare staff member from a remote location amid the COVID-19 pandemic. The proposed design consists of two portions: (1) a complete design of mechanical, electrical/electronic, mechatronic, control, and communication parts along with complete assembly to make a complete multitask-performing robot that interacts with patients to take vitals, termed as RoboDoc, and (2) the design of the healthcare staff side (master/operator side) control of a joystick mechanism with haptic feedback. The proposed RoboDoc design can be majorly divided into three parts: (1) the locomotion part is composed of two-wheeled DC motors on a rover base and two omni wheels to support the movements of the robot; (2) the interaction part consists of a single degree-of-freedom (s-DOF) neck to have communication with different heights of patients and (3) two anthropomorphic arms with three degrees-of-freedom (3-DOF). These parts help RoboDoc to reach to patient’s location and take all of the vitals using relevant devices such as an IR temperature thermometer, pulse oximeter, and electronic stethoscope for taking live auscultations from the lungs and heart of the patient. The mechanical design was created using solid works, and the electronic control design was made via proteus 8.9. For haptic teleoperation, an XBOX 360 controller based on wireless communication is used at the master/operator side. For the convenience of the healthcare staff (operator), an interactive desktop-based GUI was developed for live monitoring of all the vital signs of patients. For the remote conversation between the healthcare staff and the patient, a tablet is mounted (that also serves as the robot’s face), and that tablet is controlled via a mobile application. For visual aid, a DSLR camera is integrated and controlled remotely, which helps the doctor monitor the patient’s location as well as examine the patient’s throat. Finally, successful experimental results of basic vitals of the remote patient such as temperature sensing, pulse oximeter, and heart rate (using haptic feedback) were obtained to show the significance of the proposed cost-effective RoboDoc design.
Funder
NCRA Research Fund
Establishment of National Centre of Robotic and Automation
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Reference50 articles.
1. A review of surgical robots for spinal interventions;Bertelsen;Int. J. Med. Robot. Comput. Assist. Surg.,2012
2. Robotics and artificial intelligence in healthcare during COVID-19 pandemic: A systematic review;Sarker;Robot. Auton. Syst.,2021
3. der Loos, V., Machiel, H.F., Reinkensmeyer, D.J., and Guglielmelli, E. (2016). Springer Handbook of Robotics, Springer.
4. Hybrid Bionic Systems for the Replacement of Hand Function;Micera;Proc. IEEE,2006
5. Socially assistive robotics;Scassellati;IEEE Robot. Autom. Mag.,2016
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献