Acoustic Emission Wave Velocity Attenuation of Concrete and Its Application in Crack Localization

Author:

Li DongxueORCID,Yang Kang,He Zhaoyi,Zhou Hanlin,Li Jiaqi

Abstract

The accurate localization of an acoustic emission (AE) source is a vital aspect of AE nondestructive testing technology. A model of wave velocity attenuation caused by the extension of transmission distance is established to analyze the attenuation of AE wave velocities in concrete and thus improve the acoustic source localization accuracy from the perspective of modified velocity. In combination with the exhaustive and region localization methods, a region exhaustive localization method is established based on the modified wave velocity. The results indicate that the smaller the water–cement ratio, the larger the reference wave velocity, and the spatially dependent attenuation of wave velocity increase. Moreover, the larger the aggregate particle size, the larger the reference wave velocity, and the greater the attenuation of wave velocity with distance. For a propagation distance of 1000 mm, the AE wave velocity attenuation exceeds 50% compared with the AE velocity. The optimized localization method reduces the number of nodes calculated, thus improving the method’s accuracy when used for localization.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3