Diminishing Farm Diversity of East African Highland Bananas in Banana Bunchy Top Disease Outbreak Areas of Burundi—The Effect of Both Disease and Control Approaches

Author:

Simbare AliceORCID,Sane Cheikh Amet Bassirou,Nduwimana Innocent,Niyongere Celestin,Omondi Bonaventure Aman

Abstract

Disease-driven selection favours evasive, tolerant, and resistant cultivars, changing cultivar diversity significantly. Since its outbreak in Burundi in the late 1980s, Banana Bunchy Top Disease (BBTD) has now spread to 5 out of 18 provinces across the country, principally through informal seed exchanges. Control approaches have focused on using tissue culture clean planting material and eradicating infected mats. This study investigated the impact of BBTD and its control measures on seed selection practices and banana cultivars diversity in Burundi, by comparing two BBTD endemic sites and one where the disease wasn’t reported. Results have shown that in addition to agronomic traits used in all sites, some BBTD-typical symptoms were used in seed selection in the endemic areas. Own seed provisioning and formal seed sources networks were more likely to be observed in BBTD-endemic areas, compared with the non-endemic area. Disease control using certified tissue culture planting materials reduced the varietal diversity of local cultivars but enabled the introduction of new cultivars. A general reduction in the diversity of local cultivars grown by farmers in the BBTD endemic zones was observed, with about half of the diversity per farmer compared to the non-endemic zone. Farmer demand for varieties (local and improved) was not different between the two areas. Sustainable conservation of crop genetic diversity in the presence of disease invasions remains a problem to be addressed. Thus, implementing seed system-linked intervention with an explicit and monitored diversity conservation objective would increase the sustainability of agricultural production in such situations.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3