Regression Modeling of Daily PM2.5 Concentrations with a Multilayer Perceptron

Author:

Hoffman Szymon1ORCID,Jasiński Rafał1ORCID,Baran Janusz2

Affiliation:

1. Faculty of Infrastructure and Environment, Czestochowa University of Technology, 69 Dabrowskiego St., 42-200 Czestochowa, Poland

2. Faculty of Electrical Engineering, Czestochowa University of Technology, 17 Armii Krajowej, 42-200 Czestochowa, Poland

Abstract

Various types of energetic fuel combustion processes emit dangerous pollutants into the air, including aerosol particles, marked as PM10. Routine air quality monitoring includes determining the PM10 concentration as one of the basic measurements. At some air monitoring stations, the PM10 measurement is supplemented by the simultaneous determination of the concentration of PM2.5 as a finer fraction of suspended particles. Since the PM2.5 fraction has a significant share in the PM10 fraction, the concentrations of both types of particles should be strongly correlated, and the concentrations of one of these fractions can be used to model the concentrations of the other fraction. The aim of the study was to assess the error of predicting PM2.5 concentration using PM10 concentration as the main predictor. The analyzed daily concentrations were measured at 11 different monitoring stations in Poland and covered the period 2010–2021. MLP (multilayer perceptron) artificial neural networks were used to approximate the daily PM2.5 concentrations. PM10 concentrations and time variables were tested as predictors in neural networks. Several different prediction errors were taken as measures of modeling quality. Depending on the monitoring station, in models with one PM10 predictor, the RMSE error values were in the range of 2.31–6.86 μg/m3. After taking into account the second predictor D (date), the corresponding RMSE errors were lower and were in the range of 2.06–5.54 μg/m3. Our research aimed to find models that were as simple and universal as possible. In our models, the main predictor is the PM10 concentration; therefore, the only condition to be met is monitoring the measurement of PM10 concentrations. We showed that models trained at other air monitoring stations, so-called foreign models, can be successfully used to approximate PM2.5 concentrations at another station.

Funder

Czestochowa University of Technology Faculty of Infrastructure and Environment

Faculty of Electrical Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3