Affiliation:
1. Department of Mathematics, Central Washington University, Ellensburg, WA 98926, USA
2. Know Labs Inc., Seattle, WA 98101, USA
3. Mayo Clinic, Rochester, MN 55902, USA
Abstract
With rising healthcare costs and the rapid increase in remote physiologic monitoring and care delivery, there is an increasing need for economical, accurate, and non-invasive continuous measures of blood analytes. Based on radio frequency identification (RFID), a novel electromagnetic technology (the Bio-RFID sensor) was developed to non-invasively penetrate inanimate surfaces, capture data from individual radio frequencies, and convert those data into physiologically meaningful information and insights. Here, we describe groundbreaking proof-of-principle studies using Bio-RFID to accurately measure various concentrations of analytes in deionized water. In particular, we tested the hypothesis that the Bio-RFID sensor is able to precisely and non-invasively measure and identify a variety of analytes in vitro. For this assessment, varying solutions of (1) water in isopropyl alcohol; (2) salt in water, and (3) commercial bleach in water were tested, using a randomized double-blind trial design, as proxies for biochemical solutions in general. The Bio-RFID technology was able to detect concentrations of 2000 parts per million (ppm), with evidence suggesting the ability to detect considerably smaller concentration differences.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献