Resource Utilization of Acid Mine Drainage (AMD): A Review

Author:

Yuan Jiaqiao,Ding Zhan,Bi Yunxiao,Li Jie,Wen Shuming,Bai ShaojunORCID

Abstract

Acid mine drainage (AMD) is a typical type of pollution originating from complex oxidation interactions that occur under ambient conditions in abandoned and active mines. AMD has high acidity and contains a high concentration of heavy metals and metalloids, posing a serious threat to ecological systems and human health. Over the years, great progress has been made in the prevention and treatment of AMD. Remediation approaches like chemical neutralization precipitation, ion exchange, membrane separation processes, and bioremediation have been extensively reported. Nevertheless, some limitations, such as low efficacy, excessive consumption of chemical reagents, and secondary contamination restrict the application of these technologies. The aim of this review was to provide updated information on the sustainable treatments that have been engaged in the published literature on the resource utilization of AMD. The recovery and reuse of valuable resources (e.g., clean water, sulfuric acid, and metal ions) from AMD can offset the cost of AMD remediation. Iron oxide particles recovered from AMD can be applied as adsorbents for the removal of pollutants from wastewater and for the fabrication of effective catalysts for heterogeneous Fenton reactions. The application of AMD in beneficiation fields, such as activating pyrite and chalcopyrite flotation, regulating pulp pH, and leaching copper-bearing waste rock, provides easy access to the innovative utilization of AMD. A review such as this will help researchers understand the progress in research, and identify the strengths and weaknesses of each treatment technology, which can help shape the direction of future research in this area.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3