Multiphase Identification Algorithm for Fall Recording Systems Using a Single Wearable Inertial Sensor

Author:

Hsieh Chia-YehORCID,Huang Hsiang-YunORCID,Liu Kai-ChunORCID,Liu Chien-Pin,Chan Chia-TaiORCID,Hsu Steen Jun-PingORCID

Abstract

Fall-related information can help clinical professionals make diagnoses and plan fall prevention strategies. The information includes various characteristics of different fall phases, such as falling time and landing responses. To provide the information of different phases, this pilot study proposes an automatic multiphase identification algorithm for phase-aware fall recording systems. Seven young adults are recruited to perform the fall experiment. One inertial sensor is worn on the waist to collect the data of body movement, and a total of 525 trials are collected. The proposed multiphase identification algorithm combines machine learning techniques and fragment modification algorithm to identify pre-fall, free-fall, impact, resting and recovery phases in a fall process. Five machine learning techniques, including support vector machine, k-nearest neighbor (kNN), naïve Bayesian, decision tree and adaptive boosting, are applied to identify five phases. Fragment modification algorithm uses the rules to detect the fragment whose results are different from the neighbors. The proposed multiphase identification algorithm using the kNN technique achieves the best performance in 82.17% sensitivity, 85.74% precision, 73.51% Jaccard coefficient, and 90.28% accuracy. The results show that the proposed algorithm has the potential to provide automatic fine-grained fall information for clinical measurement and assessment.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3