Abstract
(1) Background: Public sidewalk GIS data are essential for smart city development. We developed an automated street-level sidewalk detection method with image-processing Google Street View data. (2) Methods: Street view images were processed to produce graph-based segmentations. Image segment regions were manually labeled and a random forest classifier was established. We used multiple aggregation steps to determine street-level sidewalk presence. (3) Results: In total, 2438 GSV street images and 78,255 segmented image regions were examined. The image-level sidewalk classifier had an 87% accuracy rate. The street-level sidewalk classifier performed with nearly 95% accuracy in most streets in the study area. (4) Conclusions: Highly accurate street-level sidewalk GIS data can be successfully developed using street view images.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献