Person-Situation Debate Revisited: Phase Transitions with Quenched and Annealed Disorders

Author:

Jędrzejewski ArkadiuszORCID,Sznajd-Weron KatarzynaORCID

Abstract

We study the q-voter model driven by stochastic noise arising from one out of two types of nonconformity: anticonformity or independence. We compare two approaches that were inspired by the famous psychological controversy known as the person–situation debate. We relate the person approach with the quenched disorder and the situation approach with the annealed disorder, and investigate how these two approaches influence order–disorder phase transitions observed in the q-voter model with noise. We show that under a quenched disorder, differences between models with independence and anticonformity are weaker and only quantitative. In contrast, annealing has a much more profound impact on the system and leads to qualitative differences between models on a macroscopic level. Furthermore, only under an annealed disorder may the discontinuous phase transitions appear. It seems that freezing the agents’ behavior at the beginning of simulation—introducing quenched disorder—supports second-order phase transitions, whereas allowing agents to reverse their attitude in time—incorporating annealed disorder—supports discontinuous ones. We show that anticonformity is insensitive to the type of disorder, and in all cases it gives the same result. We precede our study with a short insight from statistical physics into annealed vs. quenched disorder and a brief review of these two approaches in models of opinion dynamics.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3