Predicting Perceived Stress Related to the Covid-19 Outbreak through Stable Psychological Traits and Machine Learning Models

Author:

Flesia LucaORCID,Monaro MerylinORCID,Mazza CristinaORCID,Fietta ValentinaORCID,Colicino Elena,Segatto BarbaraORCID,Roma PaoloORCID

Abstract

The global SARS-CoV-2 outbreak and subsequent lockdown had a significant impact on people’s daily lives, with strong implications for stress levels due to the threat of contagion and restrictions to freedom. Given the link between high stress levels and adverse physical and mental consequences, the COVID-19 pandemic is certainly a global public health issue. In the present study, we assessed the effect of the pandemic on stress levels in N = 2053 Italian adults, and characterized more vulnerable individuals on the basis of sociodemographic features and stable psychological traits. A set of 18 psycho-social variables, generalized regressions, and predictive machine learning approaches were leveraged. We identified higher levels of perceived stress in the study sample relative to Italian normative values. Higher levels of distress were found in women, participants with lower income, and participants living with others. Higher rates of emotional stability and self-control, as well as a positive coping style and internal locus of control, emerged as protective factors. Predictive learning models identified participants with high perceived stress, with a sensitivity greater than 76%. The results suggest a characterization of people who are more vulnerable to experiencing high levels of stress during the COVID-19 pandemic. This characterization may contribute to early and targeted intervention strategies.

Publisher

MDPI AG

Subject

General Medicine

Reference109 articles.

1. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak

2. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China

3. Supporting Older People During the COVID-19 Pandemic is Everyone’s Businesshttps://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/4/supporting-older-people-during-the-covid-19-pandemic-is-everyones-business

4. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID‐19) implicate special control measures

5. Treatment of COVID-19: old tricks for new challenges

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3