A Reinforcement Learning Based Transmission Parameter Selection and Energy Management for Long Range Internet of Things

Author:

Yazid YassineORCID,Guerrero-González Antonio,Ez-Zazi ImadORCID,El Oualkadi AhmedORCID,Arioua Mounir

Abstract

Internet of Things (IoT) landscape to cover long-range applications. The LoRa-enabled IoT devices adopt an Adaptive Data Rate-based (ADR) mechanism to assign transmission parameters such as spreading factors, transmission energy, and coding rates. Nevertheless, the energy assessment of these combinations should be considered carefully to select an accurate combination. Accordingly, the computational and transmission energy consumption trade-off should be assessed to guarantee the effectiveness of the physical parameter tuning. This paper provides comprehensive details of LoRa transceiver functioning mechanisms and provides a mathematical model for energy consumption estimation of the end devices EDs. Indeed, in order to select the optimal transmission parameters. We have modeled the LoRa energy optimization and transmission parameter selection problem as a Markov Decision Process (MDP). The dynamic system surveys the environment stats (the residual energy and channel state) and searches for the optimal actions to minimize the long-term average cost at each time slot. The proposed method has been evaluated under different scenarios and then compared to LoRaWAN default ADR in terms of energy efficiency and reliability. The numerical results have shown that our method outperforms the LoRa standard ADR mechanism since it permits the EDs to gain more energy. Besides, it enables the EDs to stand more, consequently performing more transmissions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference62 articles.

1. Internet of Everything (IoE) Taxonomies: A Survey and a Novel Knowledge-Based Taxonomy

2. IoT-based system for indoor location using bluetooth low energy;Terán;Proceedings of the 2017 IEEE Colombian Conference on Communications and Computing (COLCOM),2017

3. A connectivity-increasing mechanism of ZigBee-based IoT devices for wireless multimedia sensor networks

4. Evolution of wireless sensor networks towards the internet of things: A survey;Mainetti;Proceedings of the SoftCOM 2011, 19th International Conference on Software, Telecommunications and Computer Networks,2011

5. A comparative study of LPWAN technologies for large-scale IoT deployment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3