Author:
Liu Yiwen,Wen Tao,Sun Wei,Liu Zhenyu,Song Xiaoying,He Xuan,Zhang Shuo,Wu Zhenning
Abstract
Computed tomography (CT) images play an important role due to effectiveness and accessibility, however, motion artifacts may obscure or simulate pathology and dramatically degrade the diagnosis accuracy. In recent years, convolutional neural networks (CNNs) have achieved state-of-the-art performance in medical imaging due to the powerful learning ability with the help of the advanced hardware technology. Unfortunately, CNNs have significant overhead on memory usage and computational resources and are labeled ‘black-box’ by scholars for their complex underlying structures. To this end, an interpretable graph-based method has been proposed for motion artifacts detection from head CT images in this paper. From a topological perspective, the artifacts detection problem has been reformulated as a complex network classification problem based on the network topological characteristics of the corresponding complex networks. A motion artifacts detection method based on complex networks (MADM-CN) has been proposed. Firstly, the graph of each CT image is constructed based on the theory of complex networks. Secondly, slice-to-slice relationship has been explored by multiple graph construction. In addition, network topological characteristics are investigated locally and globally, consistent topological characteristics including average degree, average clustering coefficient have been utilized for classification. The experimental results have demonstrated that the proposed MADM-CN has achieved better performance over conventional machine learning and deep learning methods on a real CT dataset, reaching up to 98% of the accuracy and 97% of the sensitivity.
Funder
the National Nature Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献