Graph-Based Motion Artifacts Detection Method from Head Computed Tomography Images

Author:

Liu Yiwen,Wen Tao,Sun Wei,Liu Zhenyu,Song Xiaoying,He Xuan,Zhang Shuo,Wu Zhenning

Abstract

Computed tomography (CT) images play an important role due to effectiveness and accessibility, however, motion artifacts may obscure or simulate pathology and dramatically degrade the diagnosis accuracy. In recent years, convolutional neural networks (CNNs) have achieved state-of-the-art performance in medical imaging due to the powerful learning ability with the help of the advanced hardware technology. Unfortunately, CNNs have significant overhead on memory usage and computational resources and are labeled ‘black-box’ by scholars for their complex underlying structures. To this end, an interpretable graph-based method has been proposed for motion artifacts detection from head CT images in this paper. From a topological perspective, the artifacts detection problem has been reformulated as a complex network classification problem based on the network topological characteristics of the corresponding complex networks. A motion artifacts detection method based on complex networks (MADM-CN) has been proposed. Firstly, the graph of each CT image is constructed based on the theory of complex networks. Secondly, slice-to-slice relationship has been explored by multiple graph construction. In addition, network topological characteristics are investigated locally and globally, consistent topological characteristics including average degree, average clustering coefficient have been utilized for classification. The experimental results have demonstrated that the proposed MADM-CN has achieved better performance over conventional machine learning and deep learning methods on a real CT dataset, reaching up to 98% of the accuracy and 97% of the sensitivity.

Funder

the National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3