Simulation on Different Patterns of Mobile Laser Scanning with Extended Application on Solar Beam Illumination for Forest Plot

Author:

Jiang Kang,Chen Liang,Wang Xiangjun,An FengORCID,Zhang Huaiqing,Yun TingORCID

Abstract

Light detection and ranging (LiDAR) technology has become a mainstream tool for forest surveys, significantly contributing to the improved accuracy of forest inventories. However, the accuracy of the scanned data and tree properties derived using LiDAR technology may differ depending on the occlusion effect, scanning configurations, various scanning patterns, and vegetative characteristics of forest plots. Hence, this paper presents a computer simulation program to build a digital forest plot composed of many tree models constructed based on in situ measurement information and two mobile scanning patterns, i.e., airborne laser scanning (ALS) and ground-based mobile laser scanning (MLS). Through the adjustment of scanning parameters and the velocity of vehicle loading LiDAR sensors, the points scanned using two scanning patterns were compared with the original sampling points, derived from the constructed digital forest plots. The results show that only 2% of sampling points were collected by LiDAR sensors with the fastest vehicle speed (10 m/s) and coarsest scanning angular resolution (horizontal angular resolution 0.16° and vertical angular resolution 1.33°), and approximately 50% of sampling points were collected by LiDAR sensors with slow vehicle velocity (1.25 m/s) and a finer scanning angular resolution (horizontal angular resolution 0.08° and vertical angular resolution 0.33°). Meanwhile, the potential extended application of the proposed computer simulation program as a light model of forest plots was discussed to underpin the creation of the forest digital twin. Three main conclusions are drawn: (1) the collected points from airborne laser scanning (ALS) are higher than those collected from ground-based mobile laser scanning (MLS); (2) reducing the vehicle velocity is more efficient at improving the high density of the point cloud data than by increasing the scanning angular resolution; (3) the lateral extension of crown area increasing the light beams’ receptor area and the clumped leaf dispersion augmenting the light penetration with vertical elongation are the two paramount factors influencing the light transmittance of tree crowns.

Funder

National Natural Science Foundation of China

Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Science

Natural Science Foundation of Jiangsu Province

Jiangsu Provincial Agricultural Science and Technology Independent Innovation Fund Project

Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources of the People’s Republic of China

Publisher

MDPI AG

Subject

Forestry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3