Root Production and Microbe-Derived Carbon Inputs Jointly Drive Rapid Soil Carbon Accumulation at the Early Stages of Forest Succession

Author:

Liu Ruiqiang,He YanghuiORCID,Du Zhenggang,Zhou GuiyaoORCID,Zhou Lingyan,Wang Xinxin,Li Nan,Yan Enrong,Feng Xiaojuan,Liang Chao,Zhou Xuhui

Abstract

Plants and microbes are the primary drivers in affecting the formation and accrual of soil organic carbon (SOC) for natural ecosystems. However, experimental evidence elucidating their underlying mechanisms for SOC accumulation remains elusive. Here, we quantified plant and microbial contributions to SOC accrual in successional subtropical forests by measuring leaf-, root-, and microbial biomarkers, root and leaf litter inputs, and microbial C decomposition. The long-term monitoring results showed that SOC accumulated rapidly at the early-successional stage, but changed little at the mid- and late-successional stages. SOC accrual rate was positively correlated with fine-root production and microbial C turnover, but negatively with annual litterfall. Biomarker data exhibited that the rapid SOC accumulation was jointly driven by root- and microbe-derived C inputs from the early- to mid-successional stages. In contrast, aboveground litterfall considerably contributed to soil C accrual from the mid- to late-successional stages compared to belowground processes, although SOC accumulation is low. Our study revealed the importance of root production and microbial anabolism in SOC accrual at the early stages of forest succession. Incorporating these effects of belowground C inputs on SOC formation and accumulation into earth system models might improve model performance and projection of long-term soil C dynamics.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Subject

Forestry

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3