PSDSD-A Superpixel Generating Method Based on Pixel Saliency Difference and Spatial Distance for SAR Images

Author:

Xie Tao,Huang Jingjian,Shi Qingzhan,Wang Qingping,Yuan Naichang

Abstract

Superpixel methods are widely used in the processing of synthetic aperture radar (SAR) images. In recent years, a number of superpixel algorithms for SAR images have been proposed, and have achieved acceptable results despite the inherent speckle noise of SAR images. However, it is still difficult for existing algorithms to obtain satisfactory results in the inhomogeneous edge and texture areas. To overcome those problems, we propose a superpixel generating method based on pixel saliency difference and spatial distance for SAR images in this article. Firstly, a saliency map is calculated based on the Gaussian kernel function weighted local contrast measure, which can not only effectively suppress the speckle noise, but also enhance the fuzzy edges and regions with intensity inhomogeneity. Secondly, superpixels are generated by the local k-means clustering method based on the proposed distance measure, which can efficiently sort pixels to different clusters. In this step, the distance measure is calculated by combining the saliency difference and spatial distance with a proposed adaptive local compactness parameter. Thirdly, post-processing is utilized to clean up small segments. The evaluation experiments on the simulated SAR image demonstrate that our proposed method dramatically outperforms four state-of-the-art methods in terms of boundary recall, under-segmentation error, and achievable segmentation accuracy under almost all of the experimental parameters at a moderate segment speed. The experiments on real-world SAR images of different sceneries validate the superiority of our method. The superpixel results of the proposed method adhere well to the contour of targets, and correctly reflect the boundaries of texture details for the inhomogeneous regions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3