Development of a Smart Clinical Bluetooth Thermometer Based on an Improved Low-Power Resistive Transducer Circuit

Author:

Sun SitongORCID,Xv JinglunORCID,Wang WilsonORCID,Wang Chengyuan

Abstract

Smart sensors have been used in many engineering monitoring and control applications. This work focuses on the development of a new type of clinical Bluetooth thermometer, based on an improved low-power resistive transducer circuit. Most existing resistive transducers use relatively complicated circuits with higher cost and power consumption. To tackle these problems, especially in real applications, an improved low-power resistive transducer circuit is proposed in this work and is used to develop smart Bluetooth thermometers. The parameters of the resistive transducer circuit are selected by quantitative analysis and optimization to improve the performance of the low-power resistive transducer circuit. The effectiveness of the proposed design technology was verified by tests. The temperature measurement error of the new smart Bluetooth thermometer is less than 0.1 °C, which can not only meet the clinical use requirements but also has lower cost and power consumption.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3