Research on Target Deviation Measurement of Projectile Based on Shadow Imaging Method in Laser Screen Velocity Measuring System

Author:

Chu Wenbo,Zhao Donge,Liu Baowei,Zhang Bin,Gui Zhiguo

Abstract

In the laser screen velocity measuring (LSVM) system, there is a deviation in the consistency of the optoelectronic response between the start light screen and the stop light screen. When the projectile passes through the light screen, the projectile’s over-target position, at which the timing pulse of the LSVM system is triggered, deviates from the actual position of the light screen (i.e., the target deviation). Therefore, it brings errors to the measurement of the projectile’s velocity, which has become a bottleneck, affecting the construction of a higher precision optoelectronic velocity measuring system. To solve this problem, this paper proposes a method based on high-speed shadow imaging to measure the projectile’s target deviation, ΔS, when the LSVM system triggers the timing pulse. The infrared pulse laser is collimated by the combination of the aspherical lens to form a parallel laser source that is used as the light source of the system. When the projectile passes through the light screen, the projectile’s over-target signal is processed by the specially designed trigger circuit. It uses the rising and falling edges of this signal to trigger the camera and pulsed laser source, respectively, to ensure that the projectile’s over-target image is adequately exposed. By capturing the images of the light screen of the LSVM system and the over-target projectile separately, this method of image edge detection was used to calculate the target deviation, and this value was used to correct the target distance of the LSVM to improve the accuracy of the measurement of the projectile’s velocity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. Projectile velocity measurement technology based on large effective area laser screen;Zhao;J. Test Meas. Technol.,2005

2. Shadow photography of laser-driven shock waves in air

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3