The Effect of Ultrasound on the Rehydration Characteristics of Semi-Dried Salted Apostichopus japonicus

Author:

Wang Xiaoyan12,Su Yongchang2,Wang Yangduo2,Chen Xiaoting2,Chen Xiaoe1,Liu Zhiyu2

Affiliation:

1. College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China

2. Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China

Abstract

To effectively shorten the rehydration time of Apostichopus japonicus and reduce the nutrient loss during the rehydration process, an ultrasound-assisted rehydration method was adopted to rehydrate semi-dry salted A. japonicus in this study. The effects of different ultrasonic powers, temperatures, and times on the rehydration characteristics, textural characteristics, and sensory quality of the semi-dry salted A. japonicus were studied. Box–Behnken response surface analysis was used to study the influence of the interactions among the three factors on the rehydration ratio of the semi-dry salted A. japonicus, and a quadratic multinomic regression model was established to predict the optimal rehydration ratio. The results showed that ultrasound could change the structure of semi-dry salted A. japonicus and form a spatial network structure, thereby improving its water absorption capacity and reducing rehydration time. The optimal rehydration effect could be obtained when the ultrasonic power was 400 W, the ultrasonic temperature was 50 °C, and the ultrasonic time was 83 min. Ultrasonic power, ultrasonic time, and ultrasonic temperature influenced the rehydration ratio of the semi-dry salted A. japonicus. Under the optimal rehydration conditions in this study, the rehydration ratio of semi-dry salted A. japonicus obtained by the test was 2.103, which was consistent with the value predicted by the Box–Behnken response surface method.

Funder

Fujian Province Marine Economy Development Special Fund Project

Fujian Seed Industry Innovation and Industrialization Project

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3