Succinate Enhances Lipolysis and Decreases Adipocytes Size in Both Subcutaneous and Visceral Adipose Tissue from High-Fat-Diet-Fed Obese Mice

Author:

Ji Tengteng1,Fang Bing1ORCID,Zhang Ming2ORCID,Liu Yaqiong1

Affiliation:

1. Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China

2. School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China

Abstract

Obesity is a risk factor for many chronic diseases related to the overexpansion of adipose tissue during obesity, leading to metabolic dysfunction and ectopic lipids. Previous studies reported a close relationship between succinate and obesity and its co-morbidities, and studies have also reported on its anti-obesity potential. To confirm its efficacy in obesity interventions, we supplemented mice with obesity induced by a high-fat diet with succinate (1.5% m/v in drinking water) for 11 weeks without changing the diet. After succinate supplementation, the changes in body weight, adipose tissue deposition, glucose tolerance, energy expenditure and lipid metabolism were evaluated. It was found that succinate supplementation significantly decreased subcutaneous adipose tissue (HFD: 4239.3 ± 211.2 mg; HFD-SA: 3268.9 ± 265.7 mg. p < 0.05), triglyceride contents (decreased by 1.53 mmol/g and 0.39 mmol/g in eWAT and ingWAT, respectively, p < 0.05) and NEFA (decreased by 1.41 μmol/g and 1.31 μmol/g in eWAT and ingWAT, respectively, p < 0.05). The adipocytes’ sizes all significantly decreased in both subcutaneous and visceral adipose tissue (the proportion of adipocytes with diameters larger than 100 μm in eWAT and ingWAT decreased by 16.83% and 11.96%, respectively. p < 0.05). Succinate significantly enhanced lipolysis in adipose tissue (eWAT: Adrb3, Hsl and Plin1; ingWAT: Hsl and CPT1a; p < 0.05), whereas the expression of lipogenesis-related genes remained unchanged (p > 0.05). Succinate supplementation also enhanced the activity of BAT by stimulating the expression of Ucp1 and Cidea (p < 0.05). Our results reported that succinate has a potential beneficial effect on obesity pathogenesis but cannot efficiently decrease bodyweight.

Funder

ational Key Research and Development Program of China

Beijing Nova Program

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference52 articles.

1. Management of obesity;Bray;Lancet,2016

2. Pharmacotherapy for adults with overweight and obesity: A systematic review and network meta-analysis of randomised controlled trials;Shi;Lancet,2022

3. Obesity management as a primary treatment goal for type 2 diabetes: Time to reframe the conversation;Lingvay;Lancet,2022

4. Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders;Choe;Front. Endocrinol.,2016

5. Efficacy of resveratrol supplementation on glucose and lipid metabolism: A meta-analysis and systematic review;Zhou;Front. Physiol.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3