The Authentication of Gayo Arabica Green Coffee Beans with Different Cherry Processing Methods Using Portable LED-Based Fluorescence Spectroscopy and Chemometrics Analysis

Author:

Yulia Meinilwita12ORCID,Analianasari Analianasari1,Widodo Slamet3,Kusumiyati Kusumiyati4ORCID,Naito Hirotaka5,Suhandy Diding26ORCID

Affiliation:

1. Department of Agricultural Technology, Lampung State Polytechnic, Jl. Soekarno Hatta No. 10, Rajabasa, Bandar Lampung 35141, Indonesia

2. Spectroscopy Research Group (SRG), Laboratory of Bioprocess and Postharvest Engineering, Department of Agricultural Engineering, The University of Lampung, Bandar Lampung 35145, Indonesia

3. Department of Mechanical and Biosystem Engineering, Faculty of Agricultural Engineering and Technology, IPB University, Dramaga, Bogor 16680, Indonesia

4. Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia

5. Department of Environmental Science and Technology, Graduate School of Bioresources, Mie University, 1577 Kurima-machiya-cho, Tsu-city 514-8507, Mie, Japan

6. Department of Agricultural Engineering, Faculty of Agriculture, The University of Lampung, Jl. Soemantri Brojonegoro No. 1, Bandar Lampung 35145, Indonesia

Abstract

Aceh is an important region for the production of high-quality Gayo arabica coffee in Indonesia. In this area, several coffee cherry processing methods are well implemented including the honey process (HP), wine process (WP), and natural process (NP). The most significant difference between the three coffee cherry processing methods is the fermentation process: HP is a process of pulped coffee bean fermentation, WP is coffee cherry fermentation, and NP is no fermentation. It is well known that the WP green coffee beans are better in quality and are sold at higher prices compared with the HP and NP green coffee beans. In this present study, we evaluated the utilization of fluorescence information to discriminate Gayo arabica green coffee beans from different cherry processing methods using portable fluorescence spectroscopy and chemometrics analysis. A total of 300 samples were used (n = 100 for HP, WP, and NP, respectively). Each sample consisted of three selected non-defective green coffee beans. Fluorescence spectral data from 348.5 nm to 866.5 nm were obtained by exciting the intact green coffee beans using a portable spectrometer equipped with four 365 nm LED lamps. The result showed that the fermented green coffee beans (HP and WP) were closely mapped and mostly clustered on the left side of PC1, with negative scores. The non-fermented (NP) green coffee beans were clustered mostly on the right of PC1 with positive scores. The results of the classification using partial least squares–discriminant analysis (PLS-DA), linear discriminant analysis (LDA), and principal component analysis–linear discriminant analysis (PCA-LDA) are acceptable, with an accuracy of more than 80% reported. The highest accuracy of prediction of 96.67% was obtained by using the PCA-LDA model. Our recent results show the potential application of portable fluorescence spectroscopy using LED lamps to classify and authenticate the Gayo arabica green coffee beans according to their different cherry processing methods. This innovative method is more affordable and could be easy to implement (in terms of both affordability and practicability) in the coffee industry in Indonesia.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3