Affiliation:
1. Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
2. ALINS, Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
3. GIP-USAL, Polyphenol Investigation Group, Universidad de Salamanca, 37007 Salamanca, Spain
4. Quantitative Methods Area, Economical and Statistical Department, Universidad de León, 24007 León, Spain
Abstract
The antioxidant, anti-inflammatory, and antimicrobial characteristics of propolis, a bioactive compound collected from hives, have prompted its use in the food sector in recent times. This study investigated the physicochemical characteristics, phenolic profile, and antioxidant capacity of 31 propolis extracts collected from Northern Spain. The physicochemical composition (resins, waxes, ashes mineral content, and heavy metals) was within the allowable regulatory limits. The analysis of bioactive compounds enabled the identification of 51 constituents: flavonoids (apigenin, catechin, chrysin, quercetin, and pinocembrin) and phenolic acids (caffeic, ferulic, and coumaric). The mean value of total polyphenols was 42.72 ± 13.19 Pinocembrin–Galangin Equivalents/100 g, whereas a range between 1.64 ± 0.04 and 4.95 ± 0.36 Quercetin Equivalents (QE) g/100 g was found for total flavonoids content. The determination of bioactivities revealed significant antioxidant capacity using DPPH (1114.28 ± 10.39 µM Trolox Equivalents and 3487.61 ± 318.66 µM Vitamin C Equivalents). Resin content in propolis samples was positively and significantly correlated with both polyphenols (rho = 0.365; p = 0.043) and flavonoid composition (rho = 0.615; p = 0.000) as well as the antioxidant capacity TEAC DPPH (rho = 0.415; p = 0.020). A multiple regression analysis modeled the correlation between resin composition, flavonoids, and TEAC DPPH values, yielding a significant regression equation (R2 = 0.618; F (2,28) = 22.629; p < 0.000; d = 2.299). Therefore, evaluating physicochemical parameters and biological activities provides a promising framework for predicting propolis’ quality and antioxidant properties, thus suggesting its potential as a functional and bioactive compound for the food industry.
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献