Natural Food Resource Valorization by Microwave Technology: Purslane Stabilization by Dielectric Heating

Author:

Apicella Marco1,Amato Giuseppe1,de Bartolomeis Pietro2,Barba Anna Angela134ORCID,De Feo Vincenzo1ORCID

Affiliation:

1. Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy

2. Caselle Società Agricola Srl, Via Mare Mediterraneo 18, 84098 Pontecagnano, Italy

3. EST Srl, University Spin-Off, Via Circumvallazione n.39, 83100 Avellino, Italy

4. Eng4Life Srl, Via Circumvallazione n.39, 83100 Avellino, Italy

Abstract

The application of microwave-assisted drying is a promising technique due to the features of process sustainability that are usable for responsible productions. It is largely applied for the stabilization of food products, especially in the agro-food sector. In this study, the weed Portulaca oleracea L. (purslane), with its richness in antioxidant components in addition to its recognized pharmacological properties, has been considered due to its potential to be a natural, well-accepted future food. Attention was focused on the role of the heat and mass transfer rates involved in the drying processes on the nutritional profile of the dried products. For this purpose, different drying protocols (convective, microwave irradiation, microwave-vacuum irradiation) were applied to different parts of purslane herb (apical, twigs, entire structures) and chemical characterizations were performed by a GC/MS analysis of the extracts of the dried products. The results show that microwave treatments can assure a better preservation of fatty acids such as SFAs, MUFAs, and PUFAs (which constitute over 90% of the total components in the apical part, 65% in twigs, and 85% in microwave-vacuum-dried entire purslane samples) and phytosterols (their highest preservation was found in microwave-dried twigs) compared with convective treatments. The chemical composition variability as well as treatment times depend on the drying rates (in microwave treatments, the times are on a minute scale and the rates are up to three orders of magnitude greater than convective ones), which in turn depend on the heating transport phenomena. This variability can lead towards products that are diversified by properties that transform a weed into a valorized food source.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3