Mechanical and Plasma Electrolytic Polishing of Dental Alloys

Author:

Witzke Katharina1ORCID,Kensbock Renko1,Willsch Caroline Ulrike1,Fricke Katja2,Bekeschus Sander23ORCID,Metelmann Hans-Robert1ORCID

Affiliation:

1. Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Sauerbruchstr., 17475 Greifswald, Germany

2. Leibniz Institute for Plasma Science and Technology (INP), Felix Hausdorff-Str. 2, 17489 Greifswald, Germany

3. Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany

Abstract

(1) Background: In dentistry, a reduction in surface roughness is established mostly by conventional mechanical polishing to hinder biofilm adhesion. This is time- and labor-intensive. Plasma electrolytic polishing is believed to be an effective finishing method due to the reduced treatment time and materials used for applications in dentistry. (2) Methods: Co-Cr-Mo dental alloy samples were sandblasted and prepared with either plasma electrolytic or conventional mechanical polishing. Evaluation of the polishing methods was obtained by atomic force microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. (3) Results: The sandblasted samples showed the highest surface roughness (Heraenium® Sun 991 ± 288 nm; Wironit® 1187 ± 331 nm). Our results show that with plasma electrolytic polishing, Co-Cr-Mo surfaces can be polished with a surface roughness in the nanometer range, comparable to those achieved by conventional mechanical polishing. Conventional mechanical polishing (Heraenium® Sun 134 ± 23 nm; Wironit® 114 ± 11 nm) provided lower surface roughness values compared to plasma electrolytic polishing (Heraenium® Sun 288 ± 94 nm; Wironit® 261 ± 49 nm). We anticipate our pilot study as a starting point for future studies to refine process parameters and quantitative microbiological assays. (4) Conclusions: Plasma electrolytic polishing might have a promising future for polishing dental alloys.

Funder

European Social Fund

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3