Fatigue-Induced HCP-to-FCC Phase Transformation Resulting in Two FCC-Zr Variants in Pure Zirconium

Author:

Jiang Qing1,Chen Yao12,Shuai Qi1,Liu Fulin1ORCID,Li Lang1ORCID,He Chao1ORCID,Zhang Hong1ORCID,Wang Chong1ORCID,Liu Yongjie1,Wang Qingyuan13

Affiliation:

1. Failure Mechanics and Engineering Disaster Prevention Key Laboratory of Sichuan Province, College of Architecture and Environment, Sichuan University, Chengdu 610065, China

2. Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan

3. Institute for Advanced Study, Chengdu University, Chengdu 610106, China

Abstract

This study utilized transmission electron microscopy (TEM) and on-axis transmission Kikuchi diffraction (TKD) to investigate the fatigue-induced HCP-to-FCC phase transformation in industrial pure zirconium under a stress ratio of R = 0.1. The results show that fatigue damages result from phase deformations during cyclic loadings. The fatigue-induced FCC-Zr phases exhibit a B-type orientation relationship with the HCP-Zr matrix. Notedly, due to the different growth directions of Shockley partial dislocations relative to nucleation points, there are two FCC-Zr variants after the HCP-to-FCC phase transformation. The content of these two variants accounts for 65% and 35% of the total FCC-Zr, respectively, appearing as lamellae morphology embedded parallelly within the matrix. The distribution of the two variants includes isolated distribution and adjacent distribution. For the adjacent distribution, a twinning relationship is observed between the two variants. Meanwhile, as an intermediate transition stage of the HCP-to-FCC phase transformation, stacking faults are observed at the boundaries of the FCC-Zr lamellae. These findings offer insights into the microstructural features and formation mechanisms of fatigue-induced HCP-to-FCC phase transformation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3