Biodegradation and Cell Behavior of a Mg-Based Composite with Mesoporous Bioglass

Author:

Zhou Yan1,Wang Dongsheng1ORCID,Yang Youwen12

Affiliation:

1. Key Laboratory of Construction Hydraulic Robots, Anhui Higher Education Institutes, Tongling University, Tongling 244061, China

2. Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China

Abstract

Biodegradable magnesium (Mg) and its alloys show tremendous potential as orthopedic materials. Nevertheless, the fast degradation and insufficient osteogenic properties hinder their applications. In this study, mesoporous bioglass (MBG) with an ordered branch-like structure was synthesized via a modified sol–gel method and showed a high specific surface area of 656.45 m2/g. A Mg-based composite was prepared by introducing the MBG into a Mg matrix via powder metallurgy. Degradation tests showed that the introduction of MBG increased the adsorption sites for Ca and P ions, thus promoting the formation of a Ca-P protective layer on the Mg matrix. The Ca-P protective layer became thick and dense with an increase in the immersion time, improving the protection ability of the Mg matrix, as proven by electrochemical impedance spectroscopy measurements. Meanwhile, the Mg-based composite also exhibited excellent biocompatibility and osteogenic properties. This study demonstrated the advantages of MBG in the preparation of Mg-based bone implants and validated the feasibility of improving Mg matrix corrosion resistance and enhancing osteogenesis by introducing MBG.

Funder

Anhui University Scientific Research Project

Anhui Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3