The Origin of Anomalous Density Behavior of Silica Glass

Author:

Cheng Shangcong1ORCID

Affiliation:

1. Molecular Foundry of Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract

The anomalous density–temperature relationship of vitreous silica with low hydroxyl content is explained by the formation of medium-range ordering structure in the glass transition process. The ordered medium-range structure has the shape of a “nanoflake” and consists of two layers of SiO4 tetrahedra, bonded by O atoms located in the middle of the structure. The nanoflakes interact with their surrounding structures through both covalent chemical bonds and van der Waals bonds. In the formation of the van der Waals bonds, the orientation of SiO4 tetrahedra can change, which results in an increase in distance between the nanoflakes and their surrounding structures. Thus, there is a slight volume enlargement associated with the formation of nanoflakes. Since the nanoflakes’ formation starts at a temperature near 1480 °C, and the population of the nanoflakes grows continuously as temperature decreases until about 950 °C, the bulk volume of silica glass increases in the temperature range from about 1480 °C to 950 °C. Therefore, the density anomaly of silica glass can be explained as a byproduct of forming of medium-range ordering structure in the silica glass transition.

Publisher

MDPI AG

Subject

General Materials Science

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3