Analysis of Mechanical Parameters in Multi-Pass Asymmetrical Rolling of Strip by Slab Method

Author:

Zhao Qilin1ORCID,Hu Xianlei2,Liu Xianghua12

Affiliation:

1. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China

2. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China

Abstract

Mechanical parameters, time consumption and energy consumption are important considerations in the application of a certain rolling process. This study aims to investigate characteristics of the roll force, roll torque, roll power, rolling time and total work in multi-pass asymmetrical rolling of strip. Mathematic models were built using the slab method to calculate parameters in the asymmetrical rolling process, and the characteristics of these parameters were analyzed on the basis of simulation results. Mechanical parameters are affected by the change of deformation region type. When the speed ratio is less than the critical speed ratio, the roll force, absolute values of roll torque and roll power are found to increase with the increase in the speed ratio. After the speed ratio reaches the critical speed ratio, the roll force, roll torque and lower roll power keep constant, but the upper roll power continues increasing. The upper roll torque and upper roll power required by asymmetrical rolling are much greater than that by symmetrical rolling, which indicates that stronger drive shafts and more powerful drive motors are required by asymmetrical rolling. Compared with symmetrical rolling, asymmetrical rolling requires less roll force to obtain the same thickness reduction, especially for thin and hard strips. Rolling time can be saved at the cost of more energy consumption by using asymmetrical rolling with the same roll force to attain the same final thickness. The results and conclusions of this study can provide a reference for mill design and application of asymmetrical rolling in strip manufacturing.

Publisher

MDPI AG

Subject

General Materials Science

Reference29 articles.

1. Ginzburg, V.B. (1989). Steel-Rolling Technology: Theory and Practice, Marcel Dekker, Inc.

2. An analytical approach to asymmetrical cold strip rolling using the slab method;Hwang;J. Mater. Eng. Perform.,1993

3. Study on Asymmetrical Sheet Rolling by the Finite Element Method;Hwang;Chin. J. Mech.,1999

4. Analysis of asymmetrical sheet rolling by stream function method;Hwang;JSME Int. J. Ser. Mech. Mater. Eng.,1996

5. Slab analysis of asymmetrical sheet rolling;Salimi;J. Mater. Process. Technol.,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3