Developing a Semi-Automated Near-Coastal, Water Quality-Retrieval Process from Global Multi-Spectral Data: South-Eastern Australia

Author:

Nandy Avik12ORCID,Phinn Stuart2ORCID,Grinham Alistair1ORCID,Albert Simon1ORCID

Affiliation:

1. School of Civil Engineering, The University of Queensland, Brisbane, QLD 4072, Australia

2. School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia

Abstract

The estimation of water quality properties through satellite remote sensing relies on (1) the optical characteristics of the water body, (2) the resolutions (spatial, spectral, radiometric and temporal) of the sensor and (3) algorithm(s) applied. More than 80% of global water bodies fall under Case I (open ocean) waters, dominated by scattering and absorption associated with phytoplankton in the water column. Globally, previous studies show significant correlations between satellite-based retrieval methods and field measurements of absorbing and scattering constituents, while limited research from Australian coastal water bodies appears. This study presents a methodology to extract chlorophyll a properties from surface waters from near-coastal environments, within 2 km of coastline, in Tasmania, south-eastern Australia. We use general purpose, global, long-time series, multi-spectral satellite data, as opposed to ocean colour-specific sensor data. This approach may offer globally applicable tools for combining global satellite image archives with in situ field sensors for water quality monitoring. To enable applications from local to global scales, a cloud-based geospatial analysis workflow was developed and tested on several sites. This work represents the initial stage in developing a semi-automated near-coastal water-quality workflow using easily accessed, fully corrected global multi-spectral datasets alongside large-scale computation and delivery capabilities. Our results indicated a strong correlation between the in situ chlorophyll concentration data and blue-green band ratios from the multi-spectral sensor. In line with published research, environment-specific empirical models exhibited the highest correlations between in situ and satellite measurements, underscoring the importance of tailoring models to specific coastal waters. Our findings may provide the basis for developing this workflow for other sites in Australia. We acknowledge the use of general purpose multi-spectral data such as the Sentinel-2 and Landsat Series, their corrections and algorithms may not be as accurate and precise as ocean colour satellites. The data we are using are more readily accessible and also have true global coverage with global historic archives and regular, global collection will continue at least 10 years in the future. Regardless of sensor specifications, the retrieval method relies on localised algorithm calibration and validation using in situ measurements, which demonstrates close-to-realistic outputs. We hope this approach enables future applications to also consider these globally accessible and regularly updated datasets that are suited to coastal environments.

Funder

Blue Economy CRC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3