Evaluation of Rayleigh-Corrected Reflectance on Remote Detection of Algal Blooms in Optically Complex Coasts of East China Sea

Author:

Zhang Chengxin1,Tao Bangyi12,Li Yunzhou2,Ai Libo3,Zhu Yixian1,Liang Liansong4,Huang Haiqing1,Li Changpeng15

Affiliation:

1. States Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resource, Hangzhou 310012, China

2. Institute of Oceanograhic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266100, China

3. Marine College, Shandong University (Weihai), Weihai 264200, China

4. Wenzhou Marine Center, Ministry of Natural Resource, Wenzhou 325000, China

5. Ocean College, Zhejiang University, Zhoushan 316021, China

Abstract

This study used GOCI-II data to systematically evaluate the feasibility of Rayleigh-corrected reflectance (Rrc) to detect algal blooms in the complex optical environment of the East China Sea (ECS). Based on long-term in situ remote sensing reflectance (Rrs), Rrc spectra demonstrated the similar capability of reflecting the water condition under various atmospheric conditions, and the baseline indices (BLIs) derived from Rrc and Rrs showed good consistency (R2 > 0.98). The effectiveness of five Rrc-based BLIs (SS490, CI, DI, FLH, and MCI) for algal bloom detection was assessed, among which SS490 and MCI showed better performances. A synthetic bloom detection algorithm based on the BLIs of Rrc was then developed to avoid the impact of turbid water. The validation of the BLI algorithm was carried out based on the in situ algal abundance data from 2021 to 2023. Specifically, SS490 showed the best bloom detection result (F-measure coefficient, FM = 0.97), followed by MCI (FM = 0.88). Since the 709 nm bands used in MCI were missing in many ocean color satellites, the SS490 algorithm was more useful in application. Compared to Rrs based bloom detection algorithms, synthetical Rrc BLI proposed in this paper provides more effective observation results and even better algal bloom detection performance. In conclusion, the study confirmed the feasibility of utilizing Rrc for algal bloom detection in the coastal areas of the ECS, and recognized the satisfactory performance of synthetical SS490 by comparing with the other BLIs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Scientific Research Fund of the Second Institute of Oceanography, MNR

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3