Calculating Global Navigation Satellite System Satellite Velocities and Accelerations by Utilizing the Orbit Fitting and Orbit Integration Methods

Author:

Song Chuanfeng1,Geng Shilong1,Chen Liang1,An Xiangdong2,Ma Hongyang3ORCID

Affiliation:

1. School of Geomatics, Liaoning Technical University, Fuxin 123000, China

2. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

3. School of Geomatics Science and Technology, Nanjing Tech University, Nanjing 210037, China

Abstract

The high-precision satellite velocities and accelerations calculated by the Global Navigation Satellite System (GNSS) are essential for tasks such as airborne gravity data processing. Users generally interpolate satellite positions in the precise ephemeris to calculate satellite velocity and acceleration. However, due to the edge effect, the accuracy of the interpolation is relatively low near day boundaries. In this study, a method for calculating GNSS satellite velocity and acceleration based on orbit fitting and orbit integration was proposed, and the high-precision transformation relationship between satellite velocity and acceleration in the Earth-Centered Inertial (ECI) coordinate system and the Earth-Centered, Earth-Fixed (ECEF) coordinate system was derived. The experimental results show that the satellite velocity accuracy is 1.5 × 10−6 m/s and the acceleration accuracy is 1.0 × 10−8 m/s2 according to the proposed method. Thus, the proposed method improves the accuracy of calculating satellite velocity and acceleration near day boundaries, and helps GNSS users to obtain satellite velocity and acceleration information with consistent precision throughout the day.

Funder

Young Scientists Fund of the National Natural Science Foundation of China

Liaoning Provincial Department of Education Basic Research Project

Key Laboratory of Smart Earth

Young Elite Scientists Sponsorship Program by CAST

Beijing Nova Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3