Multi-Branch Attention Fusion Network for Cloud and Cloud Shadow Segmentation

Author:

Gu Hongde1ORCID,Gu Guowei1ORCID,Liu Yi1ORCID,Lin Haifeng2ORCID,Xu Yao13

Affiliation:

1. Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210000, China

3. Department of Computer Science, University of Reading, Whiteknights, Reading RG6 6DH, UK

Abstract

In remote sensing image processing, the segmentation of clouds and their shadows is a fundamental and vital task. For cloud images, traditional deep learning methods often have weak generalization capabilities and are prone to interference from ground objects and noise, which not only results in poor boundary segmentation but also causes false and missed detections of small targets. To address these issues, we proposed a multi-branch attention fusion network (MAFNet). In the encoder section, the dual branches of ResNet50 and the Swin transformer extract features together. A multi-branch attention fusion module (MAFM) uses positional encoding to add position information. Additionally, multi-branch aggregation attention (MAA) in the MAFM fully fuses the same level of deep features extracted by ResNet50 and the Swin transformer, which enhances the boundary segmentation ability and small target detection capability. To address the challenge of detecting small cloud and shadow targets, an information deep aggregation module (IDAM) was introduced to perform multi-scale deep feature aggregation, which supplements high semantic information, improving small target detection. For the problem of rough segmentation boundaries, a recovery guided module (RGM) was designed in the decoder section, which enables the model to effectively allocate attention to complex boundary information, enhancing the network’s focus on boundary information. Experimental results on the Cloud and Cloud Shadow dataset, HRC-WHU dataset, and SPARCS dataset indicate that MAFNet surpasses existing advanced semantic segmentation techniques.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3