Impact of Fragmentation on Carbon Uptake in Subtropical Forest Landscapes in Zhejiang Province, China

Author:

Jiao Jiejie12,Cheng Yan3,Hong Pinghua4,Ma Jun5ORCID,Yao Liangjin2,Jiang Bo2,Xu Xia1,Wu Chuping2ORCID

Affiliation:

1. State Key Laboratory of Subtropical Silviculture, School of Environmental and Resources Science, Zhejiang A & F University, Lin’an 311300, China

2. Zhejiang Hangzhou Urban Ecosystem Research Station, Zhejiang Academy of Forestry, Hangzhou 310023, China

3. Hangzhou Immigration Inspection Station, Hangzhou 311223, China

4. Yuhang Ecological and Environmental Monitoring Station of Hangzhou, Hangzhou 311100, China

5. Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China

Abstract

Global changes cause widespread forest fragmentation, which, in turn, has given rise to many ecological problems; this is especially true if the forest carbon stock is profoundly impacted by fragmentation levels. However, the way in which forest carbon uptake changes with different fragmentation levels and the main pathway through which fragmentation affects forest carbon uptake are still unclear. Remote sensing data, vegetation photosynthesis models, and fragmentation models were employed to generate a time series GPP (gross primary productivity) dataset, as well as forest fragmentation levels for forest landscapes in Zhejiang province, China. We analyzed GPP variation with forest fragmentation levels and identified the relative importance of the phenology (carbon uptake period—CUP) and physiology (maximum daily GPP—GPPmax) control pathways of GPP under different fragmentation levels. The results showed that the normalized mean annual GPP data of highly fragmented forests during the period from 2000 to 2018 were significantly higher than those of other fragmentation levels, while there was almost no significant difference in the annual GPP trend of forest landscapes with all fragmentation levels. Moreover, the percentage area of the control variable, GPPmax, gradually increased with fragmentation levels; the mean GPPmax between 2000 and 2018 of high-level fragmentation was higher than that of other fragmentation levels. Our results demonstrate that the carbon uptake capacity per unit area was enhanced in highly fragmented forest areas, and the maximum photosynthetic capacity (physiology-based process) played an important role in controlling carbon uptake, especially in highly fragmented forest landscapes. Our study calls for a better and deeper understanding of the potential of forest carbon uptake, and it is necessary to explore the mechanism by which forest fragmentation changes the vegetation photosynthetic process.

Funder

the research institute support project of Zhejiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3