Multiscale Feature Search-Based Graph Convolutional Network for Hyperspectral Image Classification

Author:

Wu Ke123ORCID,Zhan Yanting3,An Ying24,Li Suyi3

Affiliation:

1. State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China

2. State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

3. School of Geophysics and Geomatics, China University of Geoscience, Wuhan 430074, China

4. Hebei Key Laboratory of Ocean Dynamics, Resources and Environments, Qinhuangdao 066004, China

Abstract

With the development of hyperspectral sensors, the availability of hyperspectral images (HSIs) has increased significantly, prompting advancements in deep learning-based hyperspectral image classification (HSIC) methods. Recently, graph convolutional networks (GCNs) have been proposed to process graph-structured data in non-Euclidean domains, and have been used for HSIC. The superpixel segmentation should be implemented first in the GCN-based methods, however, it is difficult to manually select the optimal superpixel segmentation sizes to obtain the useful information for classification. To solve this problem, we constructed a HSIC model based on a multiscale feature search-based graph convolutional network (MFSGCN) in this study. Firstly, pixel-level features of HSIs are extracted sequentially using 3D asymmetric decomposition convolution and 2D convolution. Then, superpixel-level features at different scales are extracted using multilayer GCNs. Finally, the neural architecture search (NAS) method is used to automatically assign different weights to different scales of superpixel features. Thus, a more discriminative feature map is obtained for classification. Compared with other GCN-based networks, the MFSGCN network can automatically capture features and obtain higher classification accuracy. The proposed MFSGCN model was implemented on three commonly used HSI datasets and compared to some state-of-the-art methods. The results confirm that MFSGCN effectively improves accuracy.

Funder

National Natural Science Foundation of China

the State Key Laboratory of applied optics

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3