Integrating Knowledge Graph and Machine Learning Methods for Landslide Susceptibility Assessment

Author:

Wu Qirui1,Xie Zhong1234,Tian Miao2,Qiu Qinjun234,Chen Jianguo24ORCID,Tao Liufeng234,Zhao Yifan56

Affiliation:

1. School of Future Technology, China University of Geosciences, Wuhan 430074, China

2. Key Laboratory of Geological Survey and Evaluation of Ministry of Education, China University of Geosciences, Wuhan 430074, China

3. School of Computer and Science, China University of Geosciences, Wuhan 430074, China

4. Key Laboratory of Resource Quantitative Evaluation and Information Engineering, Ministry of Natural Resources, China University of Geosciences, Wuhan 430074, China

5. Key Laboratory for Environment and Disaster Monitoring and Evaluation, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China

6. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The suddenness of landslide disasters often causes significant loss of life and property. Accurate assessment of landslide disaster susceptibility is of great significance in enhancing the ability of accurate disaster prevention. To address the problems of strong subjectivity in the selection of assessment indicators and low efficiency of the assessment process caused by the insufficient application of a priori knowledge in landslide susceptibility assessment, in this paper, we propose a novel landslide susceptibility assessment framework by combing domain knowledge graph and machine learning algorithms. Firstly, we combine unstructured data, extract priori knowledge based on the Unified Structure Generation for Universal Information Extraction Pre-trained model (UIE) fine-tuned with a small amount of labeled data to construct a landslide susceptibility knowledge graph. We use Paired Relation Vectors (PairRE) to characterize the knowledge graph, then construct a target area characterization factor recommendation model by calculating spatial correlation, attribute similarity, Term Frequency–Inverse Document Frequency (TF-IDF) metrics. We select the optimal model and optimal feature combination among six typical machine learning (ML) models to construct interpretable landslide disaster susceptibility assessment mapping. Experimental validation and analysis are carried out on the three gorges area (TGA), and the results show the effectiveness of the feature factors recommended by the knowledge graph characterization learning, with the overall accuracy of the model after adding associated disaster factors reaching 87.2%. The methodology proposed in this research is a better contribution to the knowledge and data-driven assessment of landslide disaster susceptibility.

Funder

Natural Science Foundation of China

the National Key Research and Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3