Synthetic Aperture Radar Monitoring of Snow in a Reindeer-Grazing Landscape

Author:

Carlsson Ida1,Rosqvist Gunhild12,Wennbom Jenny Marika1,Brown Ian A.12ORCID

Affiliation:

1. Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden

2. Bolin Centre, Stockholm University, 106 91 Stockholm, Sweden

Abstract

Snow cover and runoff play an important role in the Arctic environment, which is increasingly affected by climate change. Over the past 30 years, winter temperatures in northern Sweden have risen by 2 °C, accompanied by an increase in precipitation. This has led to a higher incidence of thaw–freeze and rain-on-snow events. Snow properties, such as the snow depth and longevity, and the timing of snowmelt in spring significantly impact the alpine tundra vegetation. The emergent vegetation at the edge of the snow patches during spring and summer constitutes an essential nutrient supply for reindeer. We have used Sentinel-1 synthetic aperture radar (SAR) to determine the onset of the surface melt and the end of the snow cover in the core reindeer grazing area of the Laevás Sámi reindeer-herding community in northern Sweden. Using SAR data from March to August during the period 2017 to 2021, the start of the surface melt is identified by detecting the season’s backscatter minimum. The end of the snow cover is determined using a threshold approach. A comparison between the results of the analysis of the end of the snow cover from Sentinel-1 and in situ measurements, for the years 2017 to 2020, derived from an automatic weather station located in Laevásvággi reveals a 2- to 10-day difference in the snow-free ground conditions, which indicates that the method can be used to investigate when the ground is free of snow. VH data are preferred to VV data due to the former’s lower sensitivity to temporary wetting events. The outcomes from the season backscatter minimum demonstrate a distinct 25-day difference in the start of the runoff between the 5 investigated years. The backscatter minimum and threshold-based method used here serves as a valuable complement to global snowmelt monitoring.

Funder

Swedish National Space Agency

Publisher

MDPI AG

Reference71 articles.

1. IPCC (2023). Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

2. The Influence of Arctic Amplification on Mid-Latitude Summer Circulation;Coumou;Nat. Commun.,2018

3. Facing the Limit of Resilience: Perceptions of Climate Change among Reindeer Herding Sami in Sweden;Furberg;Glob. Health Action,2011

4. Observed Cold Season Changes in a Fennoscandian Fell Area over the Past Three Decades;Kivinen;AMBIO,2015

5. Impacts of Climate Warming on Reindeer Herding Require New Land-Use Strategies;Rosqvist;AMBIO,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3