Coupling Photosynthetic Measurements with Biometric Data to Estimate Gross Primary Productivity (GPP) in Mediterranean Pine Forests of Different Post-Fire Age

Author:

Sazeides Christodoulos I.,Christopoulou AnastasiaORCID,Fyllas Nikolaos M.ORCID

Abstract

Quantification of forest Gross Primary Productivity (GPP) is important for understanding ecosystem function and designing appropriate carbon mitigation strategies. Coupling forest biometric data with canopy photosynthesis models can provide a means to simulate GPP across different stand ages. In this study we developed a simple framework to integrate biometric and leaf gas-exchange measurements, and to estimate GPP across four Mediterranean pine forests of different post-fire age. We used three different methods to estimate the Leaf Area Index (LAI) of the stands, and monthly gas exchange data to calibrate the photosynthetic light response of the leaves. Upscaling of carbon sequestration at the canopy level was made by implementing a Big Leaf and a Sun/Shade model, using both average and variant (monthly) photosynthetic capacity values. The Big Leaf model simulations systematically underestimated GPP compared to the Sun/Shade model simulations. Our simulations suggest an increasing GPP with age up to a stand maturity stage. The shape of the GPP trend with stand age was not affected by the method used to parameterise the model. At the scale of our study, variability in stand and canopy structure among the study sites seems to be the key determinant of GPP.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3