Community Detection in Semantic Networks: A Multi-View Approach

Author:

Yang HailuORCID,Liu Qian,Zhang Jin,Ding Xiaoyu,Chen Chen,Wang LiliORCID

Abstract

The semantic social network is a complex system composed of nodes, links, and documents. Traditional semantic social network community detection algorithms only analyze network data from a single view, and there is no effective representation of semantic features at diverse levels of granularity. This paper proposes a multi-view integration method for community detection in semantic social network. We develop a data feature matrix based on node similarity and extract semantic features from the views of word frequency, keyword, and topic, respectively. To maximize the mutual information of each view, we use the robustness of L21-norm and F-norm to construct an adaptive loss function. On this foundation, we construct an optimization expression to generate the unified graph matrix and output the community structure with multiple views. Experiments on real social networks and benchmark datasets reveal that in semantic information analysis, multi-view is considerably better than single-view, and the performance of multi-view community detection outperforms traditional methods and multi-view clustering algorithms.

Funder

National Natural Science Foundation of China

Nature Science Foundation of Heilongjiang Province of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3