Void Hole Avoidance for Reliable Data Delivery in IoT Enabled Underwater Wireless Sensor Networks

Author:

Sher Arshad,Khan Aasma,Javaid Nadeem,Ahmed Syed,Aalsalem Mohammed,Khan Wazir

Abstract

Due to the limited availability of battery power of the acoustic node, an efficient utilization is desired. Additionally, the aquatic environment is harsh; therefore, the battery cannot be replaced, which leaves the network prone to sudden failures. Thus, an efficient node battery dissipation is required to prolong the network lifespan and optimize the available resources. In this paper, we propose four schemes: Adaptive transmission range in WDFAD-Depth-Based Routing (DBR) (A-DBR), Cluster-based WDFAD-DBR (C-DBR), Backward transmission-based WDFAD-DBR (B-DBR) and Collision Avoidance-based WDFAD-DBR (CA-DBR) for Internet of Things-enabled Underwater Wireless Sensor Networks (IoT, UWSNs). A-DBR adaptively adjusts its transmission range to avoid the void node for forwarding data packets at the sink, while C-DBR minimizes end-to-end delay along with energy consumption by making small clusters of nodes gather data. In continuous transmission range adjustment, energy consumption increases exponentially; thus, in B-DBR, a fall back recovery mechanism is used to find an alternative route to deliver the data packet at the destination node with minimal energy dissipation; whereas, CA-DBR uses a fall back mechanism along with the selection of the potential node that has the minimum number of neighbors to minimize collision on the acoustic channel. Simulation results show that our schemes outperform the baseline solution in terms of average packet delivery ratio, energy tax, end-to-end delay and accumulated propagation distance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3