Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy

Author:

Yesilbudak Mehmet

Abstract

With the increase in the share of solar energy in the sustainable development, accurate parameter identification plays a significant role in designing optimal solar photovoltaic systems. For this purpose, this paper extensively implements and evaluates the grey wolf optimizer with a dimension learning-based hunting search strategy, an improved version of GWO named I-GWO, in the parameter extraction of photovoltaic cells and modules. According to the experimental results, the double-diode model leads to better fitness than the other diode models in representing the physical behaviors of both photovoltaic cells and photovoltaic modules. For further performance validation, firstly, the internal parameters extracted by the I-GWO algorithm and the corresponding output current data are compared with a number of widely-used parameter extraction methods in the literature. Then, the best goodness-of-fit results achieved by the I-GWO algorithm are evaluated considering many state-of-the-art metaheuristic algorithms in the literature. The accuracy measures including root mean squared error and sum of individual absolute errors show that I-GWO is fairly promising to be the efficient and valuable parameter extraction method for both photovoltaic cells and photovoltaic modules.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient maximum power point extraction using hybrid optimisation based parameter estimation model of solar double diode model;Australian Journal of Electrical and Electronics Engineering;2024-07-09

2. Optimization of Seasonal Wind Energy Forecasts with PSO Algorithm;2024 6th Global Power, Energy and Communication Conference (GPECOM);2024-06-04

3. Application of ANN–ANFIS Model for Forecasting Solar Power;Photovoltaic Systems Technology;2024-05-24

4. Multi-trial Vector-based Whale Optimization Algorithm;Journal of Bionic Engineering;2024-04-26

5. Enhanced PV Power Prediction Considering PM10 Parameter by Hybrid JAYA-ANN Model;Electric Power Components and Systems;2024-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3