Stabilization of Rock Roadway under Obliquely Straddle Working Face

Author:

Wang Peng,Zhang NongORCID,Kan Jiaguang,Wang Bin,Xu Xingliang

Abstract

A floor rock roadway under an oblique straddle working face is a typical dynamic pressure roadway. Under the complex disturbance of excavation engineering works, the roadway often undergoes stress concentration and severe deformation and damage. To solve the problem of surrounding rock stability control for this roadway type, this study considered the East Forth main transport roadway in the floor strata of the 1762(3) working face of the Pansan coal mine. In situ ground pressure monitoring and numerical simulation calculation using the FLAC2D software were carried out. The influence laws of the surrounding rock lithology, the vertical and horizontal distance between the roadway and overlying working face, the positional relationship between the roadway and the overlying working face, and the support form and strength of the rock surrounding an oblique straddle roadway were obtained. Within the range of mining influence, the properties of the rock surrounding the roof and floor were very different, and the deformation of the rock surrounding the two sides exhibited regional difference. The influence range of the mining working face on the rock floor of the roadway was approximately 30–40 m, and that of horizontal mining was approximately 50–60 m. The mining influence on the rock surrounding the side roadway of the working face is large, but the mining influence on the roadway below is small. Using FLAC2D, the stress and displacement characteristics of the rock surrounding the obliquely straddle roadway were compared and analyzed when the bolt support, combined bolt and shed support, and bolt–shotcreting–grouting support were adopted, the proposed support scheme of bolting and shotcreting was successfully applied. The deformation of the rock surrounding the roadway was satisfactorily controlled, and the results were useful as a reference for similar roadway maintenance projects.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3