Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh

Author:

Rashid FazlurORCID,Hoque Md. EmdadulORCID,Aziz MuhammadORCID,Sakib Talukdar Nazmus,Islam Md. Tariqul,Robin Raihan Moker

Abstract

The aims of this paper are to develop hybrid energy systems considering biomass energy sources as well as a framework and optimal configuration of hybrid systems of energy for a southern sub-urban area of Bhola district in Bangladesh, named Kukri Mukri island, and analyse the feasibility of the techno-economic prospects of these systems. In this work, electrification for the rural area is analysed for different configurations of the hybrid systems. The estimation of available resources with optimal sizing and analysis of techno-economic aspects is done through HOMER Pro software to satisfy the demand of peak load. Different configurations of hybrid energy systems, including PV/diesel, PV/wind, PV/diesel/wind, PV/wind/diesel/biomass, and wind/diesel, are analysed and compared through optimization of different energy sources in HOMER. The size of the system and components are optimized and designed depending on the net present cost (NPC) and the levelized cost of energy (LCOE). Due to the lower availability and rising cost of wind energy, the outcome of this work shows a solar-based photovoltaic (PV) as the main energy source, battery as the storage media, and diesel generator as an energy source for backup. The results indicate that LCOE is much lower for PV/wind/diesel/biomass (0.142 USD/kWh) than PV/diesel (0.199 USD/kWh), PV/wind (0.239 USD/kWh), PV/diesel/wind (0.167 USD/kWh), PV/diesel (0.343 USD/kWh), and wind/diesel (0.175 USD/kWh). Additionally, it is demonstrated from the research that the genetic algorithm (GA) process gives sustainable and cost-effective outcomes compared to HOMER.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3