Optimal Allocation for Electric Vehicle Charging Stations

Author:

Lee Jiwon,An Midam,Kim YongkuORCID,Seo Jung-In

Abstract

Currently, more than 30% of the fine dust generated in the Seoul metropolitan area is a pollutant emitted from automobiles such as diesel vehicles, and air pollution caused by this is becoming increasingly serious. In addition, the importance of electric vehicle distribution is increasing due to the strengthening of international environmental regulations on automobile exhaust gas and increasing the possibility of depletion of petroleum resources. This manuscript proposes a method for selecting an optimal electric vehicle charging station location in expanding charging facilities to activate electric vehicle distribution. For the sake of illustration, directions will be provided on how to select the best location for electric vehicle charging stations using data from Seoul, which has the best access. As the features, the number of living population and work force people and the number of guest facilities, which are determined to affect demand for quick charging, are considered. The missing values of the observed data are imputed based on the kriging technique from spatial correlation, and by segmenting the data through clustering, a representative technique of unsupervised learning, the characteristics of each cluster are examined and the characteristics of the clusters are identified. In addition, machine learning techniques such as the elastic net, random forest, support vector machine, and extreme gradient boosting are applied to examine the influence of the features used in predicting classes of data. In clustering analysis, the optimal number of clusters was determined to be 3 based on the heuristic and information-theoretic methods, and all the machine learning techniques considered showed that the number of work force population is the most important feature in predicting classes of data. All things considered from our results, it is reasonable to install quick electric vehicle charging stations in the places with the highest concentration of work force population and guest facility.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3