Abstract
In cold climatic regions such as those located across Canada, it is necessary to implement heating system technology that is ultra-efficient and that has near-zero rates of emissions. Such systems would satisfy consumers’ energy needs and also comply with environmental standards, especially because the systems would account for more than 80% of residential energy use. This paper investigates two complementary efficient systems that can support these heating systems; ground-source heat pumps (GSHPs) and organic Rankine cycle systems (ORCs). The study proposes to couple these two systems in a parallel configuration. A dynamic simulation model created in TRNSYS platform has been deployed to assess the performance of the combined ORC-GSHP based micro-cogeneration system. This former provides heating to a residential house during the heating mode as needed. It has the capacity to switch to a charging mode, during which the ORC system is directly coupled to the ground heat exchanger (GHE), which works as a thermal energy storage and supplies energy to the GSHP. The feasibility of this combined system arrangement, and its comparison with a conventional GSHP system are examined for use in residential buildings in three cities across the varied climatic regions within Canada, namely Edmonton (AB), Halifax (NS), and Vancouver (BC). Results showed that the proposed micro-cogeneration system recorded less energy use of over 80%. The addition of the ORC system had a definite effect on the performance of the GSHP in that it decreased the operating hours from 11–58% compared to the conventional GSHP case and maintained consistently higher COP values. These results may help to specify viable ORC-GSHP based micro-co/trigeneration systems in cold climatic applications and should be useful for prototype design and development.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献