Quantifying the Influence of Climate Change and Anthropogenic Activities on the Net Primary Productivity of China’s Grasslands

Author:

Zhou Xiafei,Peng Binbin,Zhou Ying,Yu Fang,Wang Xue-Chao

Abstract

As one of China’s most common vegetation types, grasslands comprise about 27.5% of its terrestrial area and 41% of its carbon storage. Since climate change (CC) and human activities (HA) have a great effect on grasslands, quantifying the contributions of CC and HA on grassland net primary productivity (NPP) is crucial in understanding the mechanisms of grassland regional carbon balances. However, current approaches, including residual trend, biophysical model and environmental background-based methods, have limitations on different scales, especially on the national scale of China. To improve assessment accuracy, modifications to the environmental background-based method were introduced in calculating the CC and HA contributions to the actual NPP (ANPP). In this study, the grassland ANPP in national nature reserves was defined as the environmental background value (PNPP), which was only affected by CC and without HA. The pixel PNPP outside the nature reserves could be replaced by the pixel PNPP in the nature reserve with the most similar habitat in the same natural ecological geographical division. The impact of HA on grassland ANPP (HNPP) could be identified by calculating the difference between PNPP and ANPP. Finally, the contributions of CC and HA to ANPP changes were assessed by the trends of ANPP, PNPP, and HNPP. The results showed that the average grassland ANPP significantly increased from 2001 to 2020. CC contributed 71.0% to ANPP change, whereas HA contributed 29.0%. Precipitation was the main contributor to grassland growth among arid and semi-arid regions, while temperature inhibited productivity in these areas. HA was the major cause of degradation in China’s grasslands, although the effects have declined over time. The research could provide support support for government decisions. It could also provide a new and feasible research method for quantitatively evaluating grasslands and other ecosystems.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3