Bird-Borne Samplers for Monitoring CO2 and Atmospheric Physical Parameters

Author:

Di Bernardino AnnalisaORCID,Jennings Valeria,Dell’Omo GiacomoORCID

Abstract

Air quality monitoring in cities is significant for both human health and environment. Here, an innovative miniaturized active air sampler wearable by free-flying birds is presented. The device integrates a GPS logger and atmospheric calibrated sensors allowing for high spatiotemporal resolution measurements of carbon dioxide (CO2) concentration, barometric pressure, air temperature, and relative humidity. A field campaign, carried out from January to June 2021, involved the repeated release of homing pigeons (Columba livia) from downtown Rome (Italy), to sample the air on their way back to the loft, located in a rural area out of the city. The measurements suggest the importance of green urban areas in decreasing CO2 levels. Moreover, a positive relation between CO2 levels, relative humidity, and air temperature was revealed. In contrast, a negative relation with distance from the point of release, month, and time of day was found. Flight speed and the altitude of flight were related to rising CO2 levels. The easy use of such devices paves the way for the application of miniaturized air samplers to other synanthropic species (i.e., gulls), making birds convenient biomonitors for the urban environment.

Funder

Sapienza University of Rome

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference60 articles.

1. World Urbanization Prospects: The 2018 Revision,2019

2. Covenant of Mayors: Reducing Energy Dependence in European Cities,2018

3. EEA Greenhouse Gases—Data Viewerhttps://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer

4. Intergovernmental Panel on Climate Change: Climate Change 2021. The Physical Science Basis Summary for Policymakers. Contribution of Working Group I to the sixth Assessment Report of the Intergovernmental Panel on Climate Change,2021

5. Severe thunderstorms and climate change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3