Automatic Defect Detection of Pavement Diseases

Author:

Zhao Langyue,Wu Yiquan,Luo Xudong,Yuan Yubin

Abstract

Pavement disease detection is an important task for ensuring road safety. Manual visual detection requires a significant amount of time and effort. Therefore, an automated road disease identification technique is required to guarantee that city tasks are performed. However, due to the irregular shape and large-scale differences in road diseases, as well as the imbalance between the foreground and background, the task is challenging. Because of this, we created the deep convolution neural network—DASNet, which can be used to identify road diseases automatically. The network employs deformable convolution instead of regular convolution as the feature pyramid’s input, adds the same supervision signal to the multi-scale features before feature fusion, decreases the semantic difference, extracts context information by residual feature enhancement, and reduces the information loss of the pyramid’s top-level feature map. Considering the unique shape of road diseases, imbalance problems between the foreground and background are common, therefore, we introduce the sample weighted loss function. In order to prove the superiority and effectiveness of this method, it is compared to the latest method. A large number of experiments show that this method is superior in accuracy to other methods, specifically, under the COCO evaluation metric, compared with the Faster RCNN baseline, the proposed method obtains a 41.1 mAP and 3.4 AP improvement.

Funder

National Nature Science Founding of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Study of Tire-Pavement Noise on Micro-Surfacing Mixture Based on Pavement Texture 3D-Reconstruction FEM Model;Proceedings of the 2024 International Conference on Smart City and Information System;2024-05-17

2. Deep learning‐based automatic classification of three‐level surface information in bridge inspection;Computer-Aided Civil and Infrastructure Engineering;2023-11-06

3. Cyclist Route Assessment Using Machine Learning;Proceedings of the 31st International Conference on Information Systems Development;2023-10-05

4. Road potholes detection from MLS point clouds;Measurement Science and Technology;2023-06-14

5. Automatic Pavement Crack Detection Transformer Based on Convolutional and Sequential Feature Fusion;Sensors;2023-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3