Ground Penetrating Radar in Coastal Hazard Mitigation Studies Using Deep Convolutional Neural Networks

Author:

Kumar AbhishekORCID,Singh Upendra Kumar,Pradhan BiswajeetORCID

Abstract

There is a long history of coastal erosion caused by frequent storm surges in the coastal regions of Australia, which imposes great threats to communities and infrastructures alongside the beach. Old Bar Beach, New South Wales, Australia, is one such hotspot famous for its extreme coastal erosion. To apply remedial measures such as beach nourishment effectively and economically, estimating/reconstructing the subsurface hydrogeology over the coastal areas is essential. A geophysical tool such as a ground-penetrating radar (GPR) which works on the principle of reflecting electromagnetic (EM) waves, can be conveniently deployed to delineate the soil and rock profiling, water-table depth, bedrock depth, and the subsurface structural features. Here, DeepLabv3+ architecture based newly developed deep convolutional neural networks (DCNNs) were used to establish an inherent non-linear relationship between the GPR data and the EM wave velocity. The presented DCNNs have a lesser number of layers, a lesser number of trainable (learnable) parameters, a high convergence rate and, at the same time, achieve prediction accuracy comparable to that of well-established DeepLabv3+ networks, having high trainable parameters and a relatively low convergence rate. Here, firstly the DCNNs were trained and validated on small 1D datasets. Each dataset contains a 1D GPR trace and a corresponding EM velocity model. The DCNNs turned out to be quite promising in the 1D case, with training, validation, and testing accuracy of approximately 95%, 94%, and 95%, respectively. Secondly, 1D trained weights were applied to 2D synthetic GPR data for EM velocity prediction, and the accuracy of prediction achieved was approximately 95%. Seeing the excellent performance of the DCNNs in the 2D prediction case using 1D trained weights, a large amount of 1D synthetic datasets (approximately 1.2 million) were generated and gaussian noise was added to it to replicate the real field scenario. Thirdly, topographically corrected GPR data acquired over the Old Bar Beach were inverted using the DCNNs trained on 1.2 million 1D synthetic datasets to obtain the subsurface high-resolution, high-precision EM velocity, and εr distribution information to understand the hydrogeology over the beach. The findings presented in this paper agree well with the previous hydrogeological studies carried out using GPR. Our findings show that DCNNs, along with GPR, can be successfully used in coastal environments for the quick and accurate hydrogeological investigation required for the implementation of coastal erosion mitigation methods such as beach nourishment.

Funder

the Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and IT, University of Technology Sydney

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3