On the Impacts of Historical and Future Climate Changes to the Sustainability of the Main Sardinian Forests

Author:

Cipolla Sara SimonaORCID,Montaldo Nicola

Abstract

The Mediterranean Basin is affected by climate changes that may have negative effects on forests. This study aimed to evaluate the ability of 17 forests located in the Island of Sardinia to resist or adapt to the past and future climate. Sardinia is experiencing a decreasing anthropic pressure on forests, but drought-triggered dieback in trees was recently observed and confirmed by the analysis of 20 years of satellite tree-cover data (MOD44B). Significant negative trends in yearly tree cover have affected the broad-leaved vegetation, while significative positive trends were found in the bushy sclerophyllous vegetation. Vegetation behavior resulted in being related to the mean annual precipitation (MAP); for MAP < 700 mm, we found a decline in the tall broad-leaved stands and an increase in the short ones, and the opposite was found for bushy sclerophyllous vegetations. In forests with MAP > 700 mm, both stands are stable, regardless of the growing trends in the vapor-pressure deficit (VPD) and temperature. No significative correlation between bushy sclerophyllous tree cover and the climate drivers was found, while broad-leaved tree cover is positively related to MAP1990–2019 and negatively related to the growing annual VPD. We modeled those relationships, and then we used them to coarsely predict the effects of twelve future scenarios (derived from HADGEM2-AO (CMIP5) and HadGEM3-GC31-LL (CMIP6) models) on forest tree covers. All scenarios show an annual VPD increase, and the higher its increase, the higher the trees-cover loss. The future changes in precipitation were contrasting. SC6, in line with past precipitation trends, predicts a further drop in the mean annual precipitation (−7.6%), which would correspond to an average 2.1-times-greater reduction in the tree cover (−16.09%). The future changes in precipitation for CMIP6 scenarios agree on a precipitation reduction in the range of −3.4% (SC7) to −14.29% (S12). However, although the reduction in precipitation predicted in SC12 is almost double that predicted in SC6, the consequent average reduction in TC is comparable and stands at −16%. On the contrary, SC2 predicts a turnaround with an abrupt increase of precipitation (+21.5%) in the upcoming years, with a reduction in the number of forests in water-limited areas and an increase in the percentage of tree cover in almost all forests.

Funder

Italian Ministry of Education, University and Research (MIUR) through the SWATCH European project of the PRIMA MED program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3